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Abstract. Our concem is to solve the problem of the typing of deoxyribonu-
cleic acid (DNA) sequences in a laboratory setting. Here we try to find solution
algonthms for the classification of restriction patterns, which forms part of the
above-mentioned problem, in order to evaluate the amount of information gen-
cratcd by a given restnction enzyme. A distance matrix is generated by com-
panison of each restriction pattern and used to classify the pattemns according to
their similarity. This problem can be mapped to the Traveling Salesman Prob-
lem (TSP). Scveral known and new solution algonthms have been tested. Inter-
estingly, a very simplc and modified nearest neighbor analysis performed best
for this kind of problem. However, when the distance matrix is replaced by a
“distinction matrix™ (cxpressing directly with the help of a threshold function
the similanty (0) or dissimilarity (1) between restriction patterns) the complex-
ity of the problem was reduced dramatically and it could now be solved easily
after transitive closure.

1 Introduction

For the TSP, we are given a complete, weighted graph and we want to ﬁr}q atour (a
cycle through all the vertices) of minimum weight [1]. One formal definition of the
TSP can be found in [2]. Interestingly, several problems arising fmm. the apalysns of
DNA sequences can be formulated analogous to the TSP, one of which will be pre-
sented and analyzed herein. _

DNA is the deoxyribonucleic acid, i.e. the genetic material that encodes the thar-
acteristics of living things DNA consists of strings of molecules called nucleotides.
There arc four nucleotides in DNA distinguished by its base, each fienoled by the first
letter of the base: adenine (A), cytosinc (C), guanine (G) and thymine (T) [3]. A DNA
sequence can, therefore, be treated as a character string using an ‘alphabct' of 4 letters.
The sequence of these letters defines the characteristics of any living being, thus the
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!‘“°W1°dgc of the sequence or at least part of it allows the identification of the organ-
ism to whi.ch thc.scqucnce belongs. Thus different types of sequence analysis can be
Cmpl9ycd in a clinical laboratory setting in order to identify an infectious agent pre-
sent in a samplc taken from a given paticnt. The instance that will be treated is an
example of the so-called sequence-typing problem (STP) applied to the case of the
Human Papilloma Viruses (HPV), which is associated with the development of cervi-
cal cancer [4]. The required sequence analysis may be performed by a technique
called RFLP-PCR (Restriction Fragment Length Polymorphism coupled to Poly-
merase Chain Reaction). Bricfly a segment of the viral genome is analyzed with the
help of so-called restriction enzymes, which cut the segment where a small substring
is located, i.e. the enzyme EcoRI recognizes the substring GAATTC [S]. The pattern
(sizes) of the gencrated fragments is then determined as it is obviously a function of
the sequence itself. The HPV types may then be identified, as long as the correspond-
ing patterns generated by an enzyme are different for each virus. Otherwise, combina-
tions of enzymes have to be used. Until now 48 reference sequences have been pub-
lished and more than 180 restriction enzymes are available to perform the typing,
each recognizing a different subsequence or substring.

in order to sclect an optimal combination of enzymes to carry out the typing, it is
important to cvaluate each enzyme, i.c. how much information is yielded on average
by the enzyme. This requires in a simple approach to group the restriction patterns
according to their similarity, which means that we have to detcrmine the distance
between each pair of them and order them linearly according to their similarity. This
in turn yields a distance matrix from which we have to sclect a Hamiltonian path or
circuit of minimal weight. Thus, we arc confronted with a problem similar to the TSP.
The instances are symmetric but not always geometric. However, due to the evolu-
tionary relationship of the viruses, the instances may no behave like random symmet-
ric. non-geometric instances. Furthermore, while a TSP requires the construction of a
Hamiltonian cycle, the STP requires finding an optimal Hamiltonian path (restriction
patierns ordered linearly according to their similarity). Therefore, although there have
been several algorithms published in order to find exact or approximate solutions of
the TSP [6], due to the evolutionary relationship between the members it is important
1o test the behavior of the published and novel hybnd algorithms on thesc instances.
We have not yet analyzed or characterized further the postulated special characteris-
tics of the phylogenetic structure of the TSP.

We started by building a software tool for solving the TSP (7). This tool has eight
solution algorithms; in which five of them are approximate and the other three exact
methods. A restricted version of the implementation is accessible online [8). As al-
most all algorithms previously implemented in our tool are searching for Hamiltonian
cycles, we adapted them to the STP by removing from the solution (a cycle) the edge
of maximum weight. As indicated, we evaluated also the usefulness of hybridizing
algonithms. We, therefore, constructed and tested two hybrid methods combining
initial path with local search algorithms. One of them has already been presented in a
previous article [9]. All algonithms are presented briefly in the following section.
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2 Methods

Appr-oximatc algorithms are a class of algorithms, which do not guarantee optimal
solutions but warrant a bounfl worst-case performance (near to the optimal solution)
and run faster than any algorithm that achieves optimality. Subsequently, we describe

thc approximate algorithms studied in this article.

2.1 20pt

This solulion. lechniqt_le is also called "Two Opt" the short name "Two Optimal®”, also
“Doubl.c Option™. Thls technique is one of the most successful heuristic to obtain the
approximate solution of the TSP. The Two Optimal Technique is fully described in

[10], [11].

2.2 Adaptation-Prim-20pt-Hybrid method

We modified Prim’s algorithm for the minimum spanning tree problem in order to
gencrate an initial path, which was uscd by the local search 20pt algorithm in order

to optimizc the path [9].

A spanning tree is a tree that comprises all the nodes of a given graph and not any
more [8). Greedy algorithms for optimization problems consist of making choices in
sequence such that each individual choice is best according to some limited “short
term” criterion, which is relatively easy to evaluate. Once a choice is made, it cannot
be undone; even if it becomes evident later that it was a poor choice. Although in
general greedy strategics don’t always lead to optimal solutions or aren’t always
efficient, Prim’s greedy strategy for the minimum spanning trce problem always pro-

duces optimum solutions efficiently [1].

Prim's algorithm begins at an arbitrary start vertex and grows a tree from there.
During each of the iterations of the main loop an edge is chosen from a trec vertex to
a fringe vertex; it “greedily™ chooses such an edge with minimum weight [1]. Pim’s
algorithm produces a minimum spanning tree T; it means an undirected graph with

weighted cdges. The method is fully described in [9), [10].

In the Adaptation-Prim-20pt-Hybrid method, Prim’s algorithm has been modified

such that the result is not a tree but a path. It is another greedy strategy, which has
been described previously. Once the path is found, the first and the last node are
linked in order to obtain a Hamiltonian cycle (this step is called Adaptation-Prim
APRIM), which was fed into the 20pt method that tries to improve this initial cycle
(second step). Both steps joined are called Adaptation-Prim-20pt-Hybrid method

(P20H).
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2.3 MST-20pt Hybrid method

The prot?lcm of determining an optimal tour in the symmetric n city TSP (with a
Ssymmetric cost matrix) can be viewed as the problem of finding a minimum cost
Hamiltonian cycle in a weighted, undirected graph. With this point in mind it is easy
to sec that the problem of determining the existence of a Hamiltonian cycle in a com-
plete undirected graph G = (V, E), which is transformable to the symmetric TSP [12].
The following algorithm computes a route close to the optimum of an undirected
graph G, using the Minimum-Spanning-Tree algorithm of Prim. Observe that the cost
function has to satisfy the inequality of the triangle. In this case the given route found
by this algorithm is in the worst case twice as big as the optimal route [12], [13], [14].
The solution algorithm MST-20pt Hybrid (M20OH) is described below. We have a
set (G, c), where G is a complete graph, with a non-negative cost “c”.
1. Select any vertex “r” of V [G], which will be the “root” vertex.
2. Compute a minimum spanning tree T for G from a root “r” using the minimum
spanning algorithm of Prim: T =(G, ¢, r).
3. Evaluate L as a list of visited vertices in a walk of a general tree in preorder of
T.
4. Link the first and the last node in order to close the path, which will create a
Hamiltonian cycle H. This closed path visits all the vertices in the L order.
5. The route obtained from all the vertices of the L list, is transformed in the initial
route for the 20pt algorithm. These five steps form the M20OH.
The exccution time of the M2OH is of the order O(E) = © (V2) since the input is a
complete graph [13].

2.4 Nearest-Neighbor Adaptation

The Nearest-Neighbor Adaptation (NNA) is a modification of the simple nearest
neighbor algorithm [15]. The modification consists in selecting as a specific starting
node the one, which has on average the largest distance from the rest of the vertices.
From this node we take the nearest neighbor, which hasn’t yet been visited, yielding
an algorithm with voracious characteristics [15].

2.5 Lin-Kernighan

The heuristics of Lin and Kemighan (LKH) [16) is considered one of the best ap-
proximation algorithms of the TSP problem, yielding surprisingly often, optimal
solutions for small instances. Briefly, the algorithm uses a flexible n-Opt strategy,
where the number n of edge exchanges is determined dynamically at each iteration
considering some sort of limiting criterion. We uscd in our study the implementation

of Heldsgaun [17].
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2.6 A Better Branch and Bound

This method is based on a search tree where in each step all possible solutions are
partitioned in two subsets, onc representing all nodes of the remaining search space
containing a selected node and the other containing all nodes of the remaining search
space without that particular node. Once the ramification has been carried out the
bounds for each subset are calculated and the one of the least bound is chosen to
continuc the search. The particular node picked for the next ramification according to

a heuristic that is intended to prune the tree as much as possible. This process is re-
peated recursively until the Hamiltonian circuit is found {7}, [18).

3 Experiments and Results

TSPLIB is a library of sample instances for the TSP that can be used in order to as-
sess the efficiency of algorithms [19]. However, as our goal is not to test the behavior
of the algorithms but to analyze their usefulness within the sequence typing problem,
we sclected a sample of 48 HPV sequence types corresponding to a genomic segment
of the L1 gene, which were studied by restriction analysis with 182 restriction en-
zymes. Only 138 restriction enzymes cut at least one HPV sequence.

In addition, in order to increase the sample size, we performed a restriction analy-
sis with “synthetic” enzymes recognizing all 4-tuples missing from the above men-
tioned natural set of recognition scquences. We obtained an additional set of 120
instances.

The theoretical restriction patterns were compared with each other. As a measure-
ment of the similarity we used the sum of differences between the migration posi-
tions. The matrices showed various degrees of redundancy due to the existence of
identical restriction patterns, thus we eliminated the linearly dependent vectors, and
some matrices were reduced down to 2x2 matrices. We analyzcd only matrices of 3x3
and larger. The distribution of instances is shown in Fig. 1. Later on, we grouped the

instances according to the following ranges: 3-9 (10), 10-19 (20), 20-29 (30), 30-39
(40), and 40-48 (50).

I

Numbar of Instances

0 1] 20 k] 40
Number of Hodes

Fig. 1. Size distribution of the instances. We show the total distribution comprising natural as
well as “synthetic” enzymes
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The matrices were symmetric but frequently not gecometric (only 30 out of 259
comply with the triangle’s inequality). As the execution times were too short, (less
than a millisecond, with the obvious exception of the BBB), the methods were com-
pared by the weight of the Hamiltonian path and cycle. Each instance was analyzed
by the mentioned methods, and the result was expressed as the percentage above the
shortest path or cycle. We then calculated the average of the above-mentioned ranges.
These results are shown in Fig. 2.
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Fig. 2. Hamiltonian cycles. (A) Comparison of the 20PT, P20H, M20H, NNA, LKH, and
BBB algorithms. (B) For a better resolution of the results we eliminated the NNA method

As we can see, in Fig. 2 the various methods behave as expected, i.c. the initial
path algorithm yiclds only good solutions for very short instances. All local search
algorithms produce better approximate solutions. However, as the instances grow,
they deviate stronger from the optimal solution with the exception of the Lin-
Kemighan algorithm, which found almost always, optimal solutions. The hybrid
methods work belter than the local scarch method by itsclf.

In Fig. 3 we show the results for Hamiltonian paths. As almost all algorithms pre-
viously implementcd in our tool are searching for Hamiltonian cycles, we adapted
them to Hamiltonian paths by removing from the cycle the edge of maximum weight.
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NNA sho“fs a very good behavior with tiny instances; however, its efficiency de-
creases rapidly with instances above 20 nodes. With the analyzed instances, all other

algorithms show a sim.ilar behavior. There is only a small but noticeable success of
the BBB and LKH for instances larger than 30.
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Fig. 3. Hamiltonian paths. Comparison of the 20PT, P20H, M2OH, NNA, LKH, and BBB
algorithms

Once the restriction pattcmns have been ordered according to their similarity (cither
as a Hamiltonian circuit or path), we can now proceed o group them by means of a
threshold function in classes of restriction patterns. The number and size distribution
of the classes created by an enzyme is related to the information provided. The more
groups are formed, the more information may be provided. However, at a given
threshold, the less groups are formed the more striking differences between the
classes of restriction patterns are emphasized. We analyzed, thercfore, the formations
of pattern classes and calculated the number of classes formed in excess over the best

solution (sec Fig. 4).
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Fig. 4. Number of excess classes. Comparison of the 20PT, P20H, M20OH and NNA algo-
nthms

Total Classes in Excess

First of all it should be notcd that there was no difference in the use of either t_:ir-
cuits or paths for the gencration of classes, most likely due to the fact that the heaviest
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cdge, which has been removed from the circuit to generate a path, is always a border
bf!t\vct_:n two pattern classes. It has been hypothesized that by optimizing a Hamilto-
nian circuit based on a distance matrix, the transitions from one pattern to the next are
smoothed out so that the number of patiern classes is reduced simultaneously. How-
ever, from the Fig. 4 it is apparcnt that thesc two events of optimization are not re-
lated: the algorithm that yields the worst result in generating circuits forms the small-
est number of excess classes. The failure to optimize the number of classes resides in
the fact that the target to be optimized is not directly represented by the matrix under-
lying the TSP. Thercfore, we gencrated with the help of our threshold function a so
called distinction matrix, where we report whether two restriction patterns are cither
similar (0) or belong to different classes (1). This procedure reduced drastically the
complexity of the problem and it could now be solved casily by reducing the matrix
afier its transitive closure (i.e. if d, = 0 and d; = 0, then it must also be dy = 0 for the
distances d between any combination i, /, k of three patterns).

4 Discussion and Conclusions

We have analyzed the behavior of several methods for approximate solutions of the
TSP and a classification problem applied to our viral instances. As most of the meth-
ods have been developed to construct a Hamiltonian circuit, in our first series of ¢x-
periments we analyzed how good they behave in finding them. As was to be antici-
pated, initial path algorithms do not perform well in comparison to the implemented
local search or combined initial path and local search algorithms. According to our
results the most efficient algorithm was the LKH, especially for larger instances.
However, by solving the related TSP we could not optimize the classification prob-
lem. Nevertheless, the representation of the classification problem as a distinction
matrix allowed us to reduce significantly the complexity of the problem and solve it
afier transitive closure by a simple reduction of the distinction matrices. However, it
is worthwhile to note that the restriction patterns ordered by LKH serve as a better
template to identify by visual comparison a given pattern obtained from a patient,
thus the solution of the underlying TSP may still prove useful.

We have still to test whether there is a significant difference in the complexity of
matrices derived from sequences of phylogenctically related organisms or generated
at random.

In conclusion, we have demonstrated that in our case even simple traveling sales-
man heuristics are highly useful to address part of the sequence-typing problem.
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